Joyce/Dayton offers Metric Screw Jacks in several designs including:

- Translating
- Keyed for non-rotation
- Keyed for traveling nut (KFTN)
- Double clevis

A guide for ordering is on pages 72 and 73.

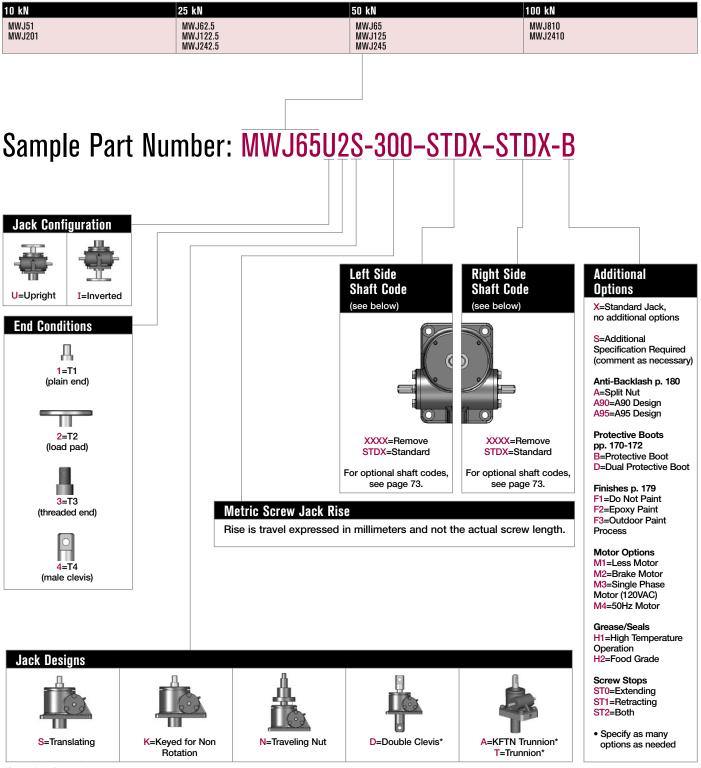
Joyce metric screw jacks, series MWJ, are specifically designed for positioning and lifting applications that must be fully metric. These jacks are commonly used in OEM machinery manufactured in the U.S. and shipped to other countries around the world. They are fully interchangeable with several European products.

Metric screw jacks are available in four capacities: 10 kN, 25 kN, 50 kN, and 100 kN. MWJ screw jacks feature:

- Industry standard metric (trapezoidal) lifting screw diameters and pitches.
- Fully metric mounting hole locations, diameters and fasteners.
- Alloy steel worm shafts and bronze wormgears and traveling nuts.
- Tapered roller or ball thrust bearings provide rugged reliability.

Both upright and inverted configurations of these precision jacks operate at full capacity whether the load is in tension or compression. All MWJ jacks are self-locking under full capacity.

Metric screw jacks are available with one of four standard screw ends or special ends to meet your requirements. Double input shafts are standard. An optional anti-backlash feature (pages 180 and 181) compensates for thread wear, assuring minimum play between lifting screw and wormgear for smooth, precise operation. All jack designs can be fitted with protective boots.


Joyce/Dayton can customize metric screw jacks to meet your specifications.

© Joyce/Dayton Corp., 2016

METRIC SCREW JACKS ORDERING INFORMATION

Instructions: Select a model number from this chart.

^{*}Contact Joyce/Dayton with your requirements.

joycedayton.com

METRIC SCREW JACKS SHAFT CODES

Instructions: Select the appropriate shaft codes for both right and left hand shafts. One shaft code must be specified for each side of the jack.

Screw Stops (p. 10) and Boots (pp. 170-172)

Screw stops are optional on metric screw jacks. When specified, the closed height of the jack and the protection tube length may be increased.

When boots are added to metric jacks, the closed height of the jack may be increased.

Mechanical Counters (p. 177)

CNT0=0.025 mm increments Note: Contact Joyce/Dayton for availability and options.

Hand Wheels (p. 177)

HW04 = 4" dia. (102 mm)

HW06 = 6" dia. (152 mm)

HW08 = 8" dia (203 mm)

HW10 = 10" dia (254 mm) Recommended

HW12 = 12" dia (305 mm) jacks only.

for self-locking

Geared Potentiometers (p. 176)

POTA=0-10V (IP65)

POTB=4-20MA (IP65)

POTC=0-10V w/2 switches*

POTD=4-20MA w/2 switches*

*Optional IP65 rating available.

Encoders and Electronic Limit Switches

ENCX=Encoder (p. 178)

ELS2=2 Position Electronic Switch

ELS4=4 Position Electronic Switch

ELS6=6 Position Electronic Switch

Motor code

Motors for Systems and Direct Drives (p. 185)

- All standard motors are 3-phase, 208-230/460 VAC or 230/460 VAC. Other motor options are available. Specify the appropriate motor size from the chart on the right.
- Refer to the "Additional Options" chart on the preceding page as needed.
- If the motor frequency will be varied to provide a "soft" start, an inverter duty motor may be required.
- International voltage motors are available.

Motors					
Size	Code				
1/4 HP	К				
1/3 HP	Α				
1/2 HP	В				
3/4 HP	С				
1 HP	D				
1-1/2 HP	E				
2 HP	F				
3 HP	L				
5 HP	G				

Motor Mounts (p. 185)

Ordering Example:

MMA A

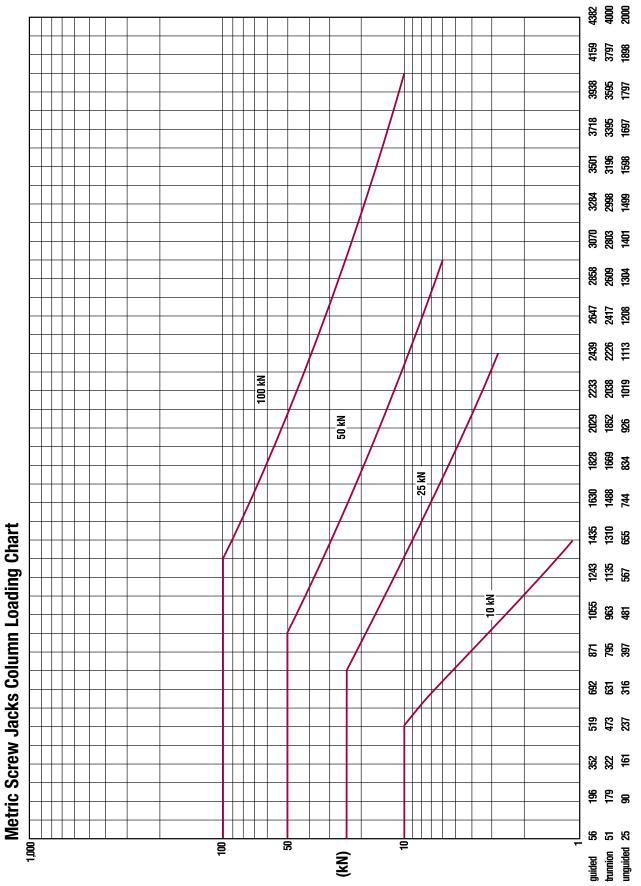
MMA=56C

MMB=140TC

MMC=180TC

MMD=210TC

from chart at left


- · Standard motor adapters are aluminum.
- . Motor adapters for many IEC motors are available as an option.

Mechanical Limit Switches (pp. 174-175)

Ordering Example: LA13

Models			Available Positions								
Model	Code			1	2*	3	4*	5	6*	7*	8*
LS7-402	LI			П	пА		Д	Д	Д	5 1	Д
LS8-402	LA		Left Side Shaft Options	(Page 1)							
LS8-404	LB	Number of DPDT Switches (see p. 175) NOTE: Will always be 0 for LS7 models									
LS9-502	LC										
LS9-503	LD		Right Side	Д	19	АП	Д	д	д		
LS9-504	LE						1	DA	13.0		
LS9-505	LF		Shaft Options						The state of	100	
LS9-506	LG										
LS9-507	LH						ailable with p ce/Dayton w				

METRIC SCREW JACKS COLUMN LOADING

Screw Length (mm)

This chart includes a 2:1 Factor-of-Safety based on the Euler-Johnson equation for column loading
The horizontal portion of each line represents the jack's maximum static capacity. Under static conditions, these lines can be exceeded. Please contact the factory for assistance.

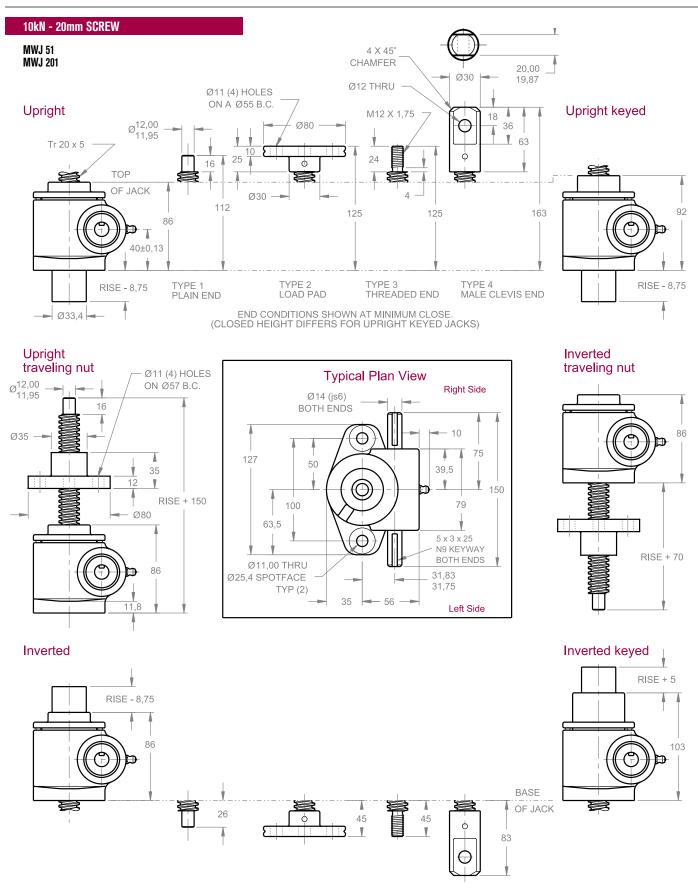
METRIC SCREW JACKS SPECIFICATIONS

Model	Capacity	Screw Diameter (mm)	Thread Pitch/Lead	Worm Gear Ratio	Worm Shaft Turns for 1mm Travel	Tare Torque (Nm)	Starting Torque (Nm)	Operating Torque (Nm)	Efficiency Rating % Approx.	Screw Torque (Nm)	Basic Jack Weight (Kg)	Jack Weight (Kg) per 25mm Travel	
MWJ51	10kN	20	5mm	5:1	1	0.33	.95W*	.70W* @ 500 RPM	22.7	2W*	2.7	0.14	
MWJ201				20:1	4		.41W*	.23W* @ 500 RPM	17.0				
MWJ62.5	25kN				6:1	1		1.01W*	.81W* @ 500 RPM	19.6			
MWJ122.5		30	6mm	12:1	2	0.67	.62W*	.45W* @ 500 RPM	17.8	3W*	6.8	0.18	
MWJ242.5				24:1	4		.44W*	.27W* @ 500 RPM	14.7				
MWJ65		OkN 40	9mm	6:1	0.67	1.13	1.64W*	1.14W* @ 300 RPM	20.9	4W*	14.5	0.32	
MWJ125	50kN			12:1	1.33		1.03W*	.64W* @ 300 RPM	18.7				
MWJ245				24:1	2.67		.74W*	.39W* @ 300 RPM	15.2				
MWJ810	100kN	100kN 55	55 12mm	8:1	0.67	2.26	1.53W*	1.18W* @ 200 RPM	20.2	5W*	19.5	0.59	
MWJ2410				24:1	2		.76W*	.49W* @ 200 RPM	16.1				

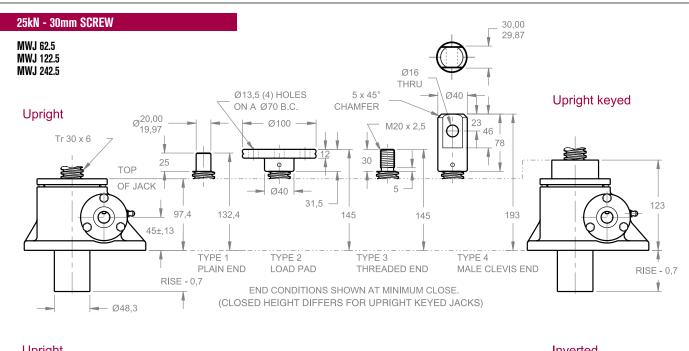
^{*}W: Load in kN.

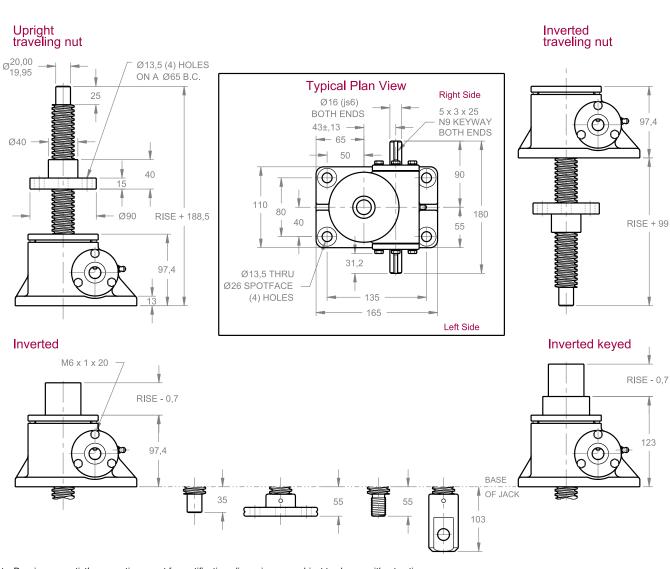
Tare Torque: Initial torque to overcome seal and normal assembly drag. This value must be added to starting torque or operating torque values.

Starting Torque: Torque value required to start moving a given load (dissipates to operating torque values once the load begins moving).

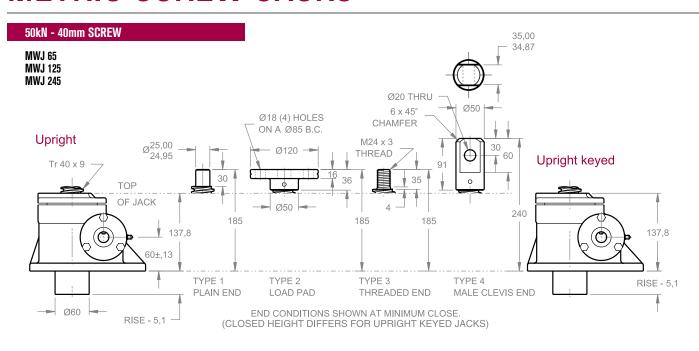

Operating Torque: Torque required to continuously raise a given load at the input RPM listed.

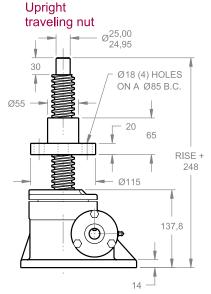
Note: If your actual input RPM is 20% higher or lower than the listed RPM, please refer to our JAX® program to determine actual torque values at your RPM.

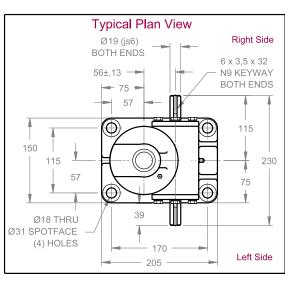

Screw Torque: Torque required to resist screw rotation (Translating Design Jacks) and traveling nut rotation (Keyed for Traveling Nut Design Jacks).

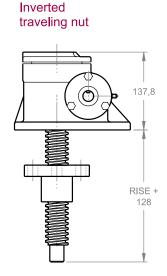

Lead: The distance traveled axially in one rotation of the lifting screw.

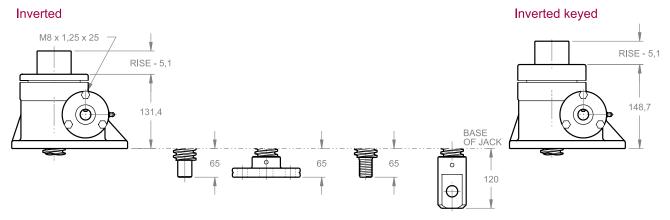
Pitch: The distance from a point on a screw thread to a corresponding point on the next thread measured axially.

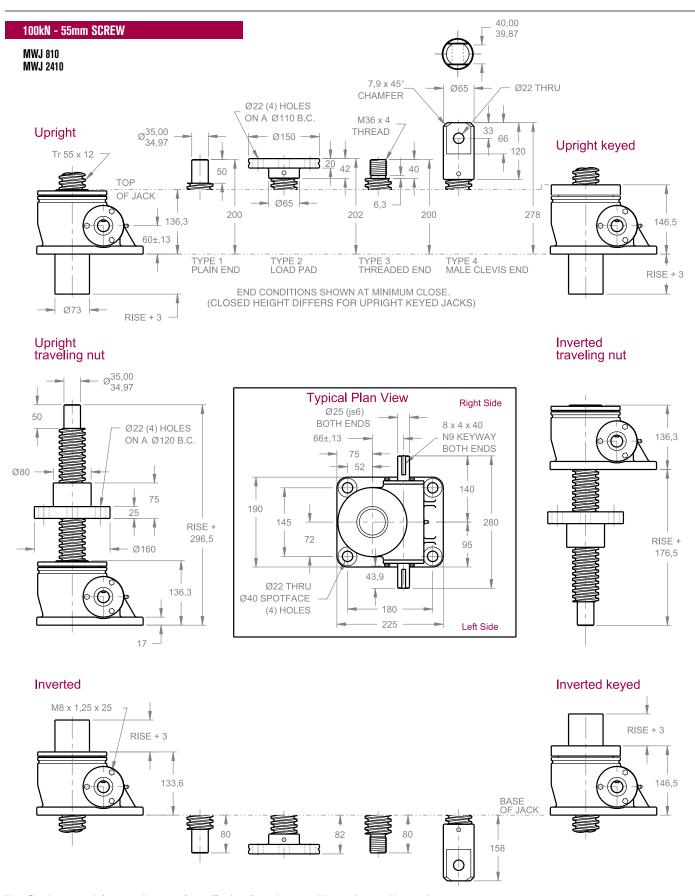



Note: Drawings are artist's conception — not for certification; dimensions are subject to change without notice.






Note: Drawings are artist's conception — not for certification; dimensions are subject to change without notice.



Note: Drawings are artist's conception — not for certification; dimensions are subject to change without notice.

Note: Drawings are artist's conception - not for certification; dimensions are subject to change without notice.